Because our conversations are text-based, they can be analysed using computational methods, which offer many exciting opportunities when complemented by human-in-the-loop coding and other qualitative approaches, including input from our clinical team of supervisors.
Our data
-
2m
text conversations
-
675000
texters across the UK
The importance of Big Data
Big data such as this is important for several reasons. Many mental health studies are based on relatively small sample sizes, which come with limitations. The dataset we have contains a large range of issues, from many different texters, which can be examined with increasing granularity as the dataset grows.
The large size of our dataset combined with high temporal precision offers several opportunities. We can explore how issues raised by particular groups vary by time of day or in response to particular events - seen very clearly in response to pandemic-related government announcements in late 2020 and early 2021. In addition, these features allow us to see mental health trends in our data. For example, we saw that mentions of the word virus in conversations began early in March 2020 as cases of Covid-19 began to increase in the UK, but well before the first national lockdown.
With a dataset of this scale, it becomes feasible to apply advanced Natural Language Processing (NLP) and machine learning approaches, including deep learning, to analyse the data and build predictive models. Indeed, such approaches are generally necessary as it becomes increasingly impractical for humans to review all of the data and use thematic analyses. These predictive models can be used for a number of exciting purposes, including predicting risk and identifying conversation themes.
These approaches also offer the opportunity to conduct research at scale, providing mental health insights based on data from many thousands of Shout service texters, especially when complemented with qualitative, thematic coding and analyses conducted by humans. Early results from our research projects at Imperial College London show that the latest NLP and machine learning approaches can be used to build models that accurately predict conversation features, including the main issues someone will text us about and texter demographics.
Explore more
-
How we use our data
Our data is used to inform and enhance our current service as well as develop key insights into mental health across the UK.
-
Academic partnerships
We are working with world leading academic experts to gain the most impactful scientific insights from our dataset.
-
Shout’s role in UK suicide prevention
Our latest report brings together evidence from Frontier Economics and the Institute of Global Health Innovation, Imperial College to highlight the role the Shout text support service plays in suicide prevention and the economic benefits.